Description

These switches are used on machines where the hazardous conditions remain for a while, even after the machines have been switched off, for example because of mechanical inertia of
 pulleys, saw disks, parts under pressure or with high temperatures. Thus, the switches can also be used if individual guards are only to be opened under certain conditions.
Versions with mode 1 and 3 (safety outputs active when guard closed and locked) are interlocks with guard locking acc. to ISO 14119; the product is labelled with the symbol shown.

Maximum safety with a single device

 D The NG series switches are conAs a result, the maximum PL e and SIL 3 safety levels can still be achieved through the use of a single device on a guard. This avoids expensive wiring in the field and allows faster installation. Inside the control cabinet, the two electronic safety outputs must be connected to a safety module with OSSD inputs or to a safety PLC.Series connection of several switches

One of the most important features of the NG series is the possibility of connecting up to 32 sensors in series, while still maintaining the maximum safety levels PL e laid down in EN 13849-1 and SIL 3 acc. to EN 62061.
This connection type is permissible in safety systems which have a safety module at the end of the chain that monitors the outputs of the last NG switch. The fact that the PL e safety level can be maintained even with 32 sensors connected in series demonstrates the extremely secure structure of each single device.

Series connection with other devices

PLe+SIL 3The NG series features two safety inputs and two safety outputs, which can be connected in series with other Pizzato Elettrica safety devices. This option allows the creation of safety chains containing various devices. For example, stainless steel safety hinges (HX BEE1 series), transponder sensors (ST series) and door lock sensors (NG series) can be connected in series while still maintaining the maximum PL e and SIL 3 safety levels.

RFID actuators with high coding level

The NG series is provided with an electronic system based on RFID technology to detect the actuator. This allows to provide each actuator with different coding and makes it impossible to tamper with a device by using another actuator of the same series. Millions of different coding combinations are possible for the actuators. They are therefore classified as high level coded actuators, according to EN ISO 14119.

Dustproof

The switch is provided with a through hole for inserting the actuator. Thanks to this unique feature, any dust that enters the actuator hole can always come out on the opposite side instead of remaining inside. Moreover, the lock pin is provided with a diaphragm seal, making the system suitable for critical environments with a high level of dust.

Centring

The switch is provided with a wide centring inlet for the actuator pin. This solution makes it easier to align the actuator and the opening hole on the head during installation. Moreover, this solution drastically reduces the probability of a collision between the switch and the actuator, making it possible to install the device even on inaccurately closing doors.

Holding force of the locked actuator

O N W The strong interlotees a maximum actuator holding force of $F_{1 \text { max }}=9750 \mathrm{~N}$. This is one of the highest values currently available on the market today, making this device suitable for heavyduty applications.

Integrated control devices

The switch is also available with elevated cover. Control devices such as buttons, emergency buttons, indicator lights or selectors can thereby be attached directly to the switch together with corresponding contact blocks.
The result is a compact solution with direct access to control devices without needing to install them separately on the switch panel or in their own housing. The devices can be illuminated and, thanks to the PUSH-IN spring-operated connections, wiring is quick and intuitive.

Push-in spring-operated connections

The switch is provided with a PUSH-IN type spring-operated connection system on the inside. This technology allows wiring to be performed quickly and easily, as the wire just needs to be inserted into the appropriate hole in order to establish the electrical connection and automatically secure the wire. This operation can be performed with rigid or flexible wires with a crimped wire-end sleeve and requires no tools. Release is obtained by pressing the appropriate wire-releasing button.

Six LEDs for immediate diagnosis

As the LEDs have been designed for quick immediate diagnosis, the status of each input and output is highlighted by one specific LED. This makes it possible to quickly identify the interruption points in the safety chain, which device is released, which door is opened and any errors inside the device. All of this at a glance, without needing to decode complex flashing sequences.

Holding force of the unlocked actuator

The inside of each switch features a device which holds the actuator in its closed position. Ideal for all those applications where several guards are unlocked simultaneously, but only one is actually opened. The device keeps all the unlocked guards in their position with a retaining force of approx. 30 N , stopping any vibrations or gusts of wind from opening them.

Function for protecting against recoil forces

If a guard is closed too quickly or with so much force that the recoil would cause it to open again, a special function in the NG switch prevents locking. This function prevents the immediate locking of the guard if the lock signal is applied. This protects the switch against recoil forces that occur during instantaneous locking. This serves to protect the switch from damage and forces the operator to close the guard more gently.

Key release device and escape release button

The key release device (auxiliary release) is used to permit unlocking of the actuator only by personnel in possession of the key. The device also functions with no power supply and, once actuated, prevents the guard from being locked.
The escape release button allows actuator release and immediate opening of the guard. Generally used in machines within which an operator could inadvertently become trapped, it faces towards the machine interior, to allow the operator to exit even in the event of a power failure. The button has two stable states and can be freely extended in length with suitable extensions (see accessories). Both devices can be positioned on the four sides of the switch. As a result, it can be installed both towards the interior and towards the exterior of the machine.

Three safety output actuation modes

The device is available with 3 different actuation modes for safety outputs:

- mode 1: safety outputs active with inserted and locked actuator, for machines with inertia;
MODE 3
- mode 2: safety outputs active with inserted actuator, for machines without inertia;
- mode 3: a first safety output active with actuator inserted and locked and a second safety output active with actuator inserted, for special applications.

Protection against tampering

Each actuator of the NG series is supplied with four protection caps. Not only do the caps prevent dirt from accumulating and simplify cleaning, they also block access
O to the fastening screws of the actuator. O As a result, standard screws can be used
0 instead of tamper-proof screws.

Jointed actuator for inaccurately closing guards

All NG series actuators are articulated, thereby allowing the actuator pin to be safely guided into the switch through the centring hole. As a result, the actuator and switch do not need to be precisely aligned during installation. In addition, the device can thereby be used on guards with a minimum actuation radius of 150 mm without the actuation pin needing to be angled.

Head and devices with variable orientation

The system can be variably configured by loosening the 4 screws on the head.
The key release device and the escape release button can also be rotated and secured independently of one another in steps of 90°. The device can thus assume 16 different configurations.

Non-detachable head and release devices

The head and the release device can be rotated but cannot be detached from each other. This makes the switch more secure since the problem of incorrect assembly by the installer cannot occur; in addition, the risk of damage is lower (loss of small parts, penetration of dirt, etc.).

High protection degree

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to EN 60529. They can therefore be used in all environments where maximum protection degree of the housing is required. Due to their special design, these devices are suitable for use in equipment subjected to cleaning with high pressure hot water jets. These devices meet the IP69K test requirements according to ISO 20653 (water jets with 100 bar and $80^{\circ} \mathrm{C}$).

External device monitoring

EDMOn request, the switch can be supplied with EDM function (External Device Monitoring). In this case, the switch itself checks the proper function of the devices connected to the safety outputs. These devices (usually relays or safety contactors) must send a feedback signal to the EDM input, which checks that the received signal is consistent with the state of the safety outputs.

Selection diagram

CONDUIT ENTRIES

Code structure

NG 2D1D411A-F31E34K900LP30

Operating principle

D1D locked actuator with de-energised solenoid
D1E locked actuator with energised solenoid
D5D
locked actuator with de-energised solenoid. With key release
locked actuator with de-energised solenoid. With key release and escape release button

D7D locked actuator with de-energised solenoid. With escape release button

D7E locked actuator with energised solenoid. With escape release button

Inputs and outputs

2 safety inputs IS1, IS2
2 safety outputs OS1, OS2
1 signalling output O3: actuator inserted
3
1 signalling output O4: actuator locked I4 or IE1/IE2 inputs for solenoid activation 1 reset input 13
Note: Supplied only together with actuator
2 safety inputs IS1, IS2
2 safety outputs OS1, OS2
41 signalling output O3: actuator inserted 1 signalling output O4: actuator locked 14 or IE1//E2 inputs for solenoid activation 1 input I3: actuator programming / reset 2 safety inputs IS1, IS2
2 safety outputs OS1, OS2
1 signalling output O3: actuator inserted
51 signalling output O4: actuator locked 14 or IE1/IE2 inputs for solenoid activation 1 input 13 : actuator programming / reset 1 feedback input EDM I5
2 safety inputs IS1, IS2
2 safety outputs OS1, OS2
6
1 signalling output O3: actuator inserted
1 signalling output FAULT O4
I4 or IE1/IE2 inputs for solenoid activation
1 input 13 : actuator programming / reset

Activation of OS outputs
1
mode 1: safety outputs OS1 and OS2 active with inserted and locked actuator
mode 2: safety outputs OS1 and OS2 active with inserted actuator
mode 3: safety output OS1 active with inserted and locked actuator, safety output OS2 active with inserted actuator

Release button length

for max. 15 mm wall thickness (standard) LP30 for max. 30 mm wall thickness LP40 for max. 40 mm wall thickness LP50 for max. 50 mm wall thickness LP60 for max. 60 mm wall thickness ... other wall thicknesses on request

Pre-installed connectors

 without connector (standard)K110 M12 metal connector, 12-pole, bottom M23 metal connector, 19-pole, bottom, configuration 1
K900 M23 metal connector, 12-pole, bottom
M12 metal connector, 8-pole, bottom, for series connection
... other connectors on request
For the complete list of possible combinations please contact our technical department.

Actuator extraction force

actuator extraction force 30 N (standard)
E34 actuator freely removable

Actuator

```
F30 low level coded actuator VN NG-F30
    the switch recognises any type F30 actuator
    high level coded actuator VN NG-F31
    the switch recognises one single type F31 actuator
```


Cover configurations

1A low cover (standard)
1B raised cover without holes
cover with white button / yellow button / emergency button with rotary release
cover with white button / black button / emergency button with rotary release

1E cover with white button / black button
1F cover with green button / red button
1G cover with green button
... other configurations on request

Code structure for actuator

Actuator

F31 high level coded actuator the switch recognises one single type F31 actuator

Main features

- Actuation without contact, using RFID technology
- Digitally coded actuator
- Actuator holding force: 9750 N
- SIL 3 and PL e with a single device
- Metal housing, three M20 conduit entries
- Protection degree up to IP67 and IP69K
- PL e also with series connection of up to 32 devices
- Signalling LED

Quality marks:

EC type examination certificate: M6A180475157023
UL approval:
E131787
TÜV SÜD approval: Z10 180475157022
EAC approval:

In compliance with standards:

EN ISO 14119, EN 60947-5-3, EN 60947-1,
IEC 60204-1, EN 60204-1, EN ISO 12100, IEC 60529, EN 60529, EN 61000-6-2,
EN 61000-6-3, BG-GS-ET-19, IEC 61508-1, IEC 61508-2, IEC 61508-3, IEC 61508-4, SN 29500, EN ISO 13849-1, EN ISO 13849-2, EN 62061, EN 61326-1, EN 61326-3-1, EN 61326-3-2, EN 50581, ETSI 301 489-1, ETSI 301 489-3, ETSI 300 330-2, UL 508, CSA 22.2 No. 14

Compliance with the requirements of:

Machinery Directive 2006/42/EC, EMC Directive 2014/30/EC, RED Directive 2014/53/EU,
RoHS directive 2011/65/EU, FCC Part 15.

Features approved by UL

Electrical Ratings: $24 \mathrm{Vdc}, 0,25 \mathrm{~A}$.
Input supplied by Class 2 source or limited voltage limited energy.
Environmental Ratings: Types 1, 4X, 12, 13 (versions without control devices), Type 1 (versions with control devices).

Features approved by TÜV SÜD

Technical data

Metal head and housing, baked powder coating Three threaded conduit entries:
Protection degree:
Protection degree with control devices:

M20×1.5
IP67 acc. to EN 60529,
IP69K acc. to ISO 20653
IP65 acc. to EN 60529 with cable gland of equal or higher protection degree

General data

| Safety parameters | SIL | PL | Cat. | DC | PFH $_{\mathbf{D}}$ | MTTF $_{\mathbf{D}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Monitoring function: actuator locked - Mode 1 | 3 | e | 4 | High | $1,15 \mathrm{E}-09$ | 2968 |
| Monitoring function: actuator present - Mode 2 | 3 | e | 4 | High | $1,15 \mathrm{E}-09$ | 3946 |
| Monitoring function: actuator locked - Mode 3 | 2 | d | 2 | High | $1,48 \mathrm{E}-09$ | 2957 |
| Monitoring function: actuator present - Mode 3 | 2 | d | 2 | High | $1,48 \mathrm{E}-09$ | 3927 |
| Dual-channel control for locking function of the actuator | 3 | e | 4 | High | $1,51 \mathrm{E}-10$ | 4011 |
| Single-channel control for locking function of the actuator | 2 | d | 2 | High | $\mathbf{1 , 5 1 E}-10$ | 4011 |

Interlock with lock, no contact, coded: Level of coding acc. to EN ISO 14119:

Mission time:
Ambient temperature:
Max. actuation frequency
with actuator lock and release:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Maximum force before breakage $F_{1_{\text {max }}}$:
Max. holding force F_{zh} :
Maximum clearance of locked actuator:
Released actuator extraction force:
type 4 acc. to EN ISO 14119
low with F30 actuator
High with F31 actuator
20 years
$-20^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
600 operating cycles/hour
1 million operating cycles
$0.5 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~mm} / \mathrm{s}$
9750 N acc. to EN ISO 14119
7500 N acc. to EN ISO 14119
4 mm
~ 30 N

Power supply electrical data

Rated operating voltage U_{e} :
$24 \mathrm{Vdc} \pm 10 \%$ SELV
Operating current at U_{e} voltage:

Rated insulation voltage U_{i} :
Rated impulse withstand voltage $U_{i m p}$ External protection fuse:
Overvoltage category:
Solenoid duty cycle:
Solenoid consumption:
Pollution degree:
40 mA min.; 0.4 A with activated solenoid;
1.2 A with activated solenoid and all outputs at maximum power
32 Vdc
1.5 kV

2 A type gG or equivalent device
III
100% ED (continuous operation)
9 W max.
3 acc. to EN 60947-1

Electrical data of IS1/IS2/I3/14/I5/IE1/IE2/EDM inputs

Rated operating voltage U : $\quad 24 \mathrm{VdC}$
Rated current consumption $\mathrm{I}_{\mathrm{e} 1}$:
24 Vdc

Electrical data of OS1/OS2 safety outputs

Rated operating voltage $\mathrm{U}_{\mathrm{e} 2}$:
24 Vdc
Output type:
PNP type OSSD
Maximum current per output $I_{\text {e2 }}$: 0.25 A
Minimum current per output $\mathrm{I}_{\mathrm{m} 2}$: $\quad 0.5 \mathrm{~mA}$
Thermal current $I_{\text {th2 }}$:
Utilization category:
0.25 A

Short circuit detection
DC13; $U_{\mathrm{e} 2}=24 \mathrm{Vdc}, \mathrm{I}_{\mathrm{e} 2}=0.25 \mathrm{~A}$
Overcurrent protection:
Yes
Internal self-resettable protection fuse:
Yes
Duration of the deactivation impulses at the safety outputs: $<300 \mu s$
Permissible maximum capacitance between outputs: < 200 nF
Permissible maximum capacitance between output and ground: < 200 nF
Activation time of safety outputs OS1 and OS2 after
deactivation of inputs IS1, IS2:
and
typically 7 ms , max. 12 ms
Maximum delay of EDM status change:
500 ms

Electrical data of O3/O4 signalling output

Rated operating voltage $\cup_{e 3}$:

24 Vdc

Output type:
PNP
Maximum current per output $\mathrm{I}_{\mathrm{e} 3}$:
Utilization category:
Short circuit detection:
0.1 A

No
Overcurrent protection:
Internal self-resettable protection fuse:
Yes

RFID sensor data

Assured operating distance $\mathrm{S}_{\text {a0 }}$
2 mm
Assured release distance $\mathrm{S}_{\mathrm{ar}}{ }^{\text {a }}$:
4 mm (actuator not locked)
10 mm (actuator locked)
Rated operating distance S_{n} :
2.5 mm

Repeat accuracy:
$\leq 10 \% \mathrm{~S}_{\mathrm{n}}$
Differential travel:
$\leq 20 \% \mathrm{~S}_{\mathrm{n}}$
RFID transponder frequency:
125 kHz
Max. switching frequency:

Actuation mode of the OS1 and OS2 safety outputs

Mode 1 回
Safety outputs OS1 and OS2 are active when the actuator is inserted and locked.

In case of machines with or without inertia of the dangerous elements.
Safety category of the safety outputs: PLe, SIL 3 .

Mode 2
Safety outputs OS1 and OS2 are active when the actuator is inserted.

In case of machines without inertia of the dangerous elements.
Safety category of the safety outputs: PL e, SIL 3.

Mode 3

Safety output OS1 is active when the actuator is inserted and locked and IS1 is active. Safety output OS2 is active when the actuator is inserted and IS2 is active

In case of machines with or without inertia of the dangerous elements.
Safety category of the safety outputs: PL d, SIL 2.

Selection table for switches with high level coded actuators

Operating principle

Mode 1	NG 2D1D411A-F31	NG 2D1E411A-F31
Mode 2	NG 2D1D421A-F31	NG 2D1E421A-F31
Mode 3	NG 2D1D431A-F31	NG 2D1E431A-F31

$\begin{array}{c}\text { Locked actuator with } \\ \text { de-energised solenoid. } \\ \text { With key release. }\end{array}$
NG 2D5D411A-F31
NG 2D5D421A-F31
NG 2D5D431A-F31

$\begin{array}{c}\text { Locked actuator with } \\ \text { de-energised solenoid. } \\ \text { With rey release and } \\ \text { escape release button. }\end{array}$
NG 2D6D411A-F31
NG 2D6D421A-F31
NG 2D6D431A-F31

Locked actuator with de-energised solenoid. With escape release buton and sealable auxiliary release device.	Locked actuator with energised solenoid. With escape release button.
NG 2D7D411A-F31	NG 2D7E411A-F31
NG 2D7D421A-F31	NG 2D7E421A-F31
NG 2D7D431A-F31	NG 2D7E431A-F31

Selection table for switches

To order a product with EDM input replace number 4 with number 5 in the codes shown above. Example: NG 2D1D411A \rightarrow NG 2D1D511A
Legend: $₫$ interlock with lock monitoring acc. to EN ISO 14119

Selection table for actuators

The use of RFID technology in NG series devices makes them suitable for several applications. Pizzato Elettrica offers two different versions of actuators, in order to best suit customers' specific needs.
Type F30 actuators are all encoded with the same code. This implies that a device associated with an actuator type F30 can be activated by other actuators type F30.
Type F31 actuators are always encoded with different codes. This implies that a device associated with an actuator type F31 can be activated only by a specific actuator. Another F31 type actuator will not be recognised by the device until a new association procedure is carried out (reprogramming). After reprogramming, the old actuator F31 will no longer be recognized.
Reprogramming of the actuator can be performed repeatedly.

Complete safety system

The use of complete and tested solutions guarantees the electrical compatibility between the NG series switches and the safety modules from Pizzato Elettrica, as well as high reliability. The switches have been tested with the modules listed in the adjacent table.

Switches	Compatible safety modules	Safety module output contacts		
		Instantaneous safety contacts	Delayed safety contacts	Signalling contacts
NG 2•••**•	CS AR-05••••	3NO	1	1NC
	CS AR-06••••	3NO	1	1NC
	CS AR-08••••	2NO	1	1
	CS AT-0•••••	2NO	2 NO	1NC
	CS AT-1•••••	3NO	2 NO	1
	CS MP••••••		page 277	
	CS MF••••••		page 305	

All NG series switches can be connected to safety modules or safety PLCs with OSSD inputs provided compatibility is ensured in advance.

NG series switches can be used as individual devices provided that the safety outputs be evaluated by a Pizzato Elettrica safety module (see table for combinable safety modules).

Possibility of series connection of multiple switches for simplifying the wiring of the safety system, whereby only the outputs of the last switch are evaluated by a Pizzato Elettrica safety module (see table with compatible safety modules). Each NG series switch is provided with two signalling outputs which are activated when the guard is closed (O3) or locked (O4). Depending on the specific requirements of the system that has been realised, the signals of the signalling outputs can be evaluated by a PLC.

Possibility of series connection of multiple switches for simplifying the wiring of the safety system, whereby only the outputs of the last switch are evaluated by a Pizzato Elettrica safety module of the CS MP series. Both the safety-relevant evaluation and the evaluation of the signalling outputs are performed by the CS MP series.
The examples listed above refer to applications with NG $2 \bullet \bullet \bullet 4 \bullet \bullet \bullet$

Internal block diagram

[^0]The diagram on the side represents the 6 logic functions which interact inside the device.
Function f0 is a basic function and includes the monitoring of the power supply as well as internal, cyclical tests.
Function f 1 monitors the status of the device inputs, whereas function f 2 monitors the presence of the actuator within the detection areas of the switch.
Function $f 4$ checks the actuator lock condition.
Function f3 is intended to activate or deactivate the safety outputs and check for any faults or short circuits in the outputs.
In the EDM versions, the f5 function verifies the consistency of the EDM signal during safety output state changes.
The safety-related function, which combines the sub-functions mentioned above, activates the safety outputs according to the chosen operating mode:

- Both safety outputs OS1/OS2 for switches in mode 1 are activated only if both IS1/IS2 safety inputs are active and the actuator is inserted and locked;
- Both safety outputs OS1/OS2 for switches in mode 2 are activated only if both IS1/IS2 safety inputs are active and the actuator is inserted;
- The safety output OS1 for switches in mode 3 is activated only if the IS1 safety input is active and the actuator is inserted and locked, whereas the safety output OS2 is activated only if the IS2 safety input is active and the actuator is inserted.
The status of each function is displayed by the corresponding LED (PWR, IN, OUT, ACT, LOCK, EDM), in such a way that the general device status becomes immediately obvious to the operator.

Actuation sequence in mode 1

The switch is supplied with power (PWR LED on, green), the IS1 and IS2 inputs are enabled (IN LED on, green), the OS1 and OS2 safety outputs are disabled (OUT LED off). The actuator is outside of the actuation zone (LED ACT off).

When the actuator is brought inside the safe actuation area (dark grey area), the switch turns on the ACT LED (green). In this position, the O 3 signalling output (doorclosed) is activated. The actuator is not locked (LOCK LED off).

The 14 input can be used to lock the actuator (LOCK LED on, green). The OS1 and OS2 safety outputs are enabled (OUT LED on, green). The O4 signalling output is activated at the same time. The safe actuation area is extended in order to allow greater play for the actuator.

The I4 input can be used to unlock the actuator (LOCK LED off). The switch disables the OS1 and OS2 safety outputs and turns off the OUT LED. The O4 signalling output is deactivated at the same time. The safe actuation area returns to the initial values.

When the actuator leaves the actuation limit area, the device turns off the ACT LED and the O3 signalling output.

Actuation sequence in mode 2 and mode 3

In contrast to the above mode 2 description, the safety outputs OS1 and OS2 are activated when the actuator is detected, and deactivated when the actuator is no longer detectable, in mode 3, the OS1 safety output is active with inserted and locked actuator and IS1 active, the OS2 safety output is active with inserted actuator and IS2 active.

Operating states

PWR LED	$\underset{\text { LED }}{\text { IN }}$	$\begin{aligned} & \text { OUT } \\ & \text { LED } \end{aligned}$	$\begin{aligned} & \text { ACT } \\ & \text { LED } \end{aligned}$	$\begin{aligned} & \text { LOCK } \\ & \text { LED } \end{aligned}$	$\begin{aligned} & \text { EDM } \\ & \text { LED } \\ & \text { (a) } \end{aligned}$	Device state	Description
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	OFF	Device switched off.
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	POWER ON	Internal tests upon activation.
-	\bigcirc	\bigcirc	*	*	-	RUN	Safety inputs of the device not active.
-	-	*	*	*	*	RUN	Activation of safety inputs.
\bigcirc	\cong	\bigcirc	*	*	*	RUN	Safety inputs incoherence. Recommended action: check for presence and/or wiring of inputs.
-	*	*	\bigcirc	*	*	RUN	Actuator in safe area. O3 signalling output active.
O	*	*	\bigcirc	-	\bigcirc	RUN	Actuator in safe area and locked; O3 and O4 outputs active.
\bigcirc	\bigcirc	-	\bigcirc	-	\bigcirc	RUN	Mode 1 Activation of safety inputs IS1, IS2. Actuator in safe area and locked. O3, O4, OS1 and OS2 outputs active.
\bigcirc	\bigcirc	-	\bigcirc	*	\bigcirc	RUN	Mode 2 Activation of safety inputs IS1, IS2. Actuator in safe area. O3, OS1 and OS2 outputs active.
\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	RUN	Mode 3. Actuator present, guard closed and locked, IS1 enabled, IS2 disabled, OS1 enabled, OS2 disabled
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	RUN	Mode 3. Actuator present, guard closed and not locked, IS1 and IS2 enabled, OS1 disabled, OS2 enabled
\bigcirc	*	$\widetilde{\widetilde{0}}$	*	*	*	ERROR	Error on safety outputs. Recommended action: check for any short circuits between the outputs, outputs and ground or outputs and power supply, then restart the device.
-	\bigcirc	\bigcirc	$\longdiv { \widehat { ® } }$	\bigcirc	\bigcirc	ERROR	Actuator detection error. Check the physical integrity of the device and, in case of failure, please replace the entire device. If undamaged, realign the actuator with the switch and restart the device.
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ERROR	Internal error. Recommended action: restart the device. If the failure persists, replace the device.
\bigcirc	*	\bigcirc	*	*	\bigcirc	RUN	EDM signal active (external relay off) ${ }^{\text {a }}$
-	-	-	-	-	\bigcirc	RUN	EDM signal not active (external relay on) ${ }^{\text {a }}$
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	§	ERROR	Error in the EDM ${ }^{\text {a function }}$

[^1]External device monitoring (EDM)

The NG $2 \mathrm{D} \bullet \bullet 5 \bullet \bullet \cdot \mathrm{version} ,\mathrm{in} \mathrm{addition} \mathrm{to} \mathrm{main-}$ taining the operating and safety characteristics of the NG series, allows control of forcibly guided NC contacts of contactors or relays controlled by the safety outputs of the switch itself. As an alternative to the relays or contactors you can use Pizzato Elettrica expansion modules CS ME-03. See page 267. This check is carried out via the EDM input (External Device Monitoring as defined in EN 61496-1) of the switch.

This version, with the IS safety inputs, can be used at the end of a series of NG switches, up to a maximum number of $\mathbf{3 2}$ devices, while maintaining the maximum PL e safety level and acc. to EN ISO 13849-1 and SIL 3 safety level acc. to EN 62061.
This solution allows you to dispense with the safety module connected to the last device in the chain.

Connection with safety modules

Connections with CS AR-08•••• safety modules
Input configuration with monitored start
2 channels / Category 4 / up to SIL 3 / PL e

Connections with CS AT- $0 \bullet \bullet \bullet \bullet /$ CS AT- $1 \bullet \bullet \bullet \bullet \bullet$ safety modules Input configuration with monitored start 2 channels / Category 4 / up to SIL 3 / PL e

Connections with CS AR-05•••• / CS AR-06•••• safety modules
Input configuration with manual start (CS AR-05 ••••) or monitored start (CS AR-06••••)
2 channels / Category 4 / up to SIL 3 / PL e

Connections with CS MF•••••, CS MP••••• safety modules The connections vary according to the program of the module Category 4/ up to SIL 3 / PL e

Application example on page 275.

Series connection of several switches

Monitoring function: actuator locked 2 channels / Category 4 / up to SIL 3 / PL e
Dual-channel control for locking function of the actuator
2 channels / Category 4 / up to SIL 3 / PL e

Connection terminals

PUSH-IN type spring-operated connection system
Cross-section of rigid/flexible wires w. wire-end Wire cross-section with pre-insulated wire- Cable stripping length (x): sleeve:
$\mathrm{min} .1 \times 0.34 \mathrm{~mm}^{2}(1 \times$ AWG 22) end sleeve:
max. $1 \times 1.5 \mathrm{~mm}^{2}(1 \times$ AWG 16)

Dimensional drawings

Switch NG 2D1D $\bullet 1$ 1A
Operating principle D, with sealable auxiliary release device, without actuator

Switch NG 2D6D 0 1A
Operating principle D, with key release and escape release button, without actuator

Switch NG 2D7D $\bullet \bullet 1$ A
Operating principle D, with escape release button, without actuator

Switch NG 2D5D••1A
Operating principle D, with key release, without actuator

Switch NG 2D7E $0 \bullet 1 \mathrm{~A}$
Operating principle E, with escape release button, without actuator

Actuator VN NG-F3•

Switch with integrated field-wireable control devices

NG 2D••••1C

	NG 2D••••1D		
	Description	Colour	Terminals
$\begin{aligned} & - \\ & \stackrel{\rightharpoonup}{J} \\ & \stackrel{\circ}{0} \end{aligned}$	illuminated button, spring-return $1 \mathrm{NO}+1 \mathrm{NC}$	white	
$\begin{aligned} & \text { N } \\ & \stackrel{0}{2} \\ & 0 \end{aligned}$	button, not illuminated, spring-return $1 \mathrm{NO}+1 \mathrm{NC}$	black	
O $\stackrel{0}{0}$ 	emergency button, not illuminated, with rotary release 2NC	red	

	NG 2D••••2V		
	Description	Colour	Terminals
$\begin{aligned} & - \\ & \stackrel{\otimes}{2} \\ & \stackrel{0}{0} \end{aligned}$	illuminated button, spring-return $1 \mathrm{NO}+1 \mathrm{NC}$	\bigcirc white	
N O 	illuminated button, spring-return $1 \mathrm{NO}+1 \mathrm{NC}$	blue	
$\begin{aligned} & \text { M } \\ & 0 \\ & \text { U } \\ & 0 \end{aligned}$	emergency button, not illuminated, with rotary release 2NC		

Internal connections (version with integrated control devices)

Switch with integrated control devices and M23 connector, 19-pole

	NG 2D••••1C-K603		
	Description	Colour	Terminals
$\begin{aligned} & - \\ & \stackrel{0}{\lambda} \\ & \stackrel{0}{0} \end{aligned}$	illuminated button, spring-return 1NO	\bigcirc white	
$\begin{aligned} & \text { N } \\ & \stackrel{0}{ \pm} \\ & \stackrel{\text { D}}{0} \end{aligned}$	illuminated button, spring-return 1NO	yellow	
$\begin{aligned} & \text { M } \\ & 0 \\ & \text { © } \\ & 0 \end{aligned}$	emergency button, not illuminated, with rotary release 2NC	red	$0-5-\left.\left.\vdots\right\|_{11} ^{10}\right\|_{14} ^{13}$

	NG 2D••••2V-K603		
	Description	Colour	Terminals
$\begin{aligned} & \text { O } \\ & \stackrel{y}{0} \\ & 0 \end{aligned}$	illuminated button, spring-return 1NO	\bigcirc white	
$$	illuminated button, spring-return 1NO	blue	
$\begin{aligned} & 0 \\ & \stackrel{0}{2} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	emergency button, not illuminated, with rotary release 2NC		$\left(-5-,\left.\left.\right\|_{11} ^{10}\right\|_{14} ^{13}\right.$

	NG 2D••••7F-K602		
	Description	Colour	Terminals
- $\stackrel{0}{む}$ $\stackrel{0}{0}$	illuminated button, spring-return 1 NO	\bigcirc white	
$\begin{aligned} & \text { N } \\ & \text { O } \\ & \text { D } \\ & 0 \end{aligned}$	illuminated button, spring-return 1NO		

Internal connections (version with integrated control devices)

Female connectors See page 321

Dimensional drawings

NG 2D ••••• switch with integrated control devices

All values in the drawings are in mm

Available integrated devices

Other devices and contacts on request.
Please contact our technical office for the complete list of available products.

Technical data of the integrated control devices

General data

Protection degree:
Mechanical endurance:
Spring-return button:
IP65 acc. to EN 60529

Emergency stop button:
Selector switch:
1 million operating cycles

Key selector switch:

Safety parameter B_{100} : 50,000 operating cycles 300,000 operating cycles 50,000 operating cycles 30,000 operating cycles including removal of the key 100,000 (emergency stop button)

Actuating force

Spring-return button:	4 N min	100 N max.
Emergency stop button:	20 N min	100 N max.
Selector switch:	0.1 Nm min	1.5 Nm max.
Key selector switch:	0.1 Nm min	1.3 Nm max.

Contact blocks of the control devices

Material of the contacts: silver contacts
Contact type:
Self-cleaning contacts with double interruption

Electrical data:

Thermal current I_{th} :
Rated insulation voltage U :
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$:
LED supply voltage:
LED supply current:

1 A
$32 \mathrm{Vac} / \mathrm{dc}$
1.5 kV
$24 \mathrm{Vdc} \pm 15 \%$
10 mA per LED

Utilization category of the contact block:
Direct current: DC13
$U_{e}(\mathrm{~V}) 24$
$\mathrm{I}_{\mathrm{e}}{ }^{e}(\mathrm{~A}) \quad 0.55$

In compliance with standards:
IEC 60947-5-1, IEC 60947-5-5, EN ISO 13850

Installation for safety applications:

Always connect the safety circuit to the NC contacts (normally closed contacts) as stated in standard EN 60947-5-1.

Extensions for release button

- Metal extensions can be combined with one another to achieve the desired length.
- Do not exceed an overall length of 500 mm between the release button and the switch.
- Use medium-strength thread locker to secure the extensions.

Adhesive labels for escape release button

Polycarbonate yellow adhesive, rectangular, $300 \times 32 \mathrm{~mm}$, red inscription. It has to be fixed on the internal part of the jamb and helps finding the escape release button.

Article	Description
VF AP-A1AGR01	PREMERE PER USCIRE
VF AP-A1AGR02	PUSHTO EXIT
VF AP-A1AGR04	ZUM ÖFFNEN DRÜCKEN
VF AP-A1AGR05	POUSSER POUR SORTIR
VF AP-A1AGR06	PULSAR PARA SALIR
VF AP-A1AGR07	HAЖATb ДЛЯ BЫXOДA
VF AP-A1AGR08	NACISNAĆ ABY WYJŚĆ
VF AP-A1AGR09	PRESSIONAR PARA SAIR

Accessories

Article	Description
VF KLB300	Set of two locking keys
Extra copy of the locking keys to be purchased if further keys are needed (standard supply: 2 units). The keys of all switches have the same code. Other codes on request.	

Series connection

To simplify series connections of the devices, various M12 connectors are available that allow complete wiring.
This solution significantly reduces installation times while at the same time maintaining the maximum safety levels PL e and SIL 3. For further information see page 326.

[^0]: LED Function
 PWR Power supply / self-diagnosis
 IN status of safety inputs
 OUT status of safety outputs
 ACT actuator state
 LOCK actuator locked
 EDM state of EDM input (NG 2D $\bullet \bullet \cdot \bullet \bullet$)

[^1]: Legend: $\bigcirc=$ off \bigcirc on = flashing = alternating colours $*=$ indifferent
 (a) Available for NG $2 \mathrm{D} \cdot \bullet 5 \bullet \bullet \bullet$ versions only

